Parvatibai Chowgule College of Arts and Science
 Autonomous

B.Sc. Semester End Examination,January 2022

Semester: III
Subject: Mathematics
Title: Differential Equations I (SEC)
Duration : 2 hours
Max Marks : 60

Instructions:

- All Questions are compulsory. However, internal choice is applicable.
- Figures to the right indicate full marks.
- Justify all responses.

1. Attempt ANY THREE of the following:
(a) Verify whether $e^{\frac{x}{2}}$ and $x e^{\frac{x}{2}}$ are solutions of the differential equation $4 y^{\prime \prime}-4 y^{\prime}+y=0$. Hence write the general solution.
(b) Solve the differential equation $(y+x+5) \frac{d y}{d x}=(y-x+1)$
(c) Verify whether the given differential equation is exact or not. If exact solve the equation. $\left(e^{y}+\cos (y) \cos (x)\right) d x=\left(\sin (y) \sin (x)-x e^{y}\right) d y$.
(d) Solve the differential equation $x y^{\prime}+y=x^{2} y^{2}$
(e) Solve $x\left(\sin \frac{y}{x}\right) \frac{d y}{d x}=y\left(\sin \frac{y}{x}\right)+x$.
2. (A) Attempt ANY ONE of the following:
(a) If $(1+x)$ is one solution of the differential equation $\left(x^{2}-x\right) y^{\prime \prime}+(x+1) y^{\prime}-y=0$. Then find its other solution and hence write the general solution.
(b) Explain the method of variation of parameters to find the particular solution of the non homogeneous linear differential equation.
(B) Solve the initial value problem $y^{\prime \prime}+y=0, y\left(\frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}}$ and $y^{\prime}\left(\frac{\pi}{4}\right)=\sqrt{2}$.
3. Answer the following questions.

$$
(6+6=12)
$$

(a) Find the general solution of the differential equation $y^{\prime \prime}-8 y^{\prime}+15 y=9 x e^{2 x} ; y(0)=5$ and $y^{\prime}(0)=10$, by undetermined coefficients.
(b) Consider the forced vibration in the underdamped case and find the frequency for which the amplitude $\frac{F_{0}}{\sqrt{\left(k-\omega^{2} M\right)^{2}+\omega^{2} c^{2}}}$ attains the maximum
4. Answer the following questions.
(a) Use the wronskian to prove that the two solutions of the homogeneous equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$, on the interval $[\mathrm{a}, \mathrm{b}]$ are linearly dependent if i) they have a common zero x_{0} in the interval
ii) they have maxima or minima at the same point x_{0} in the interval.
(b) Solve the differential equation $x^{\prime \prime}(t)+\left(\frac{g}{l}\right) x(t)=\left(\frac{g}{l}\right) L$ using inverse D operator . where g, l, L are constants subject to the condition $x(t)=a$ at $t=0$ and $\frac{d x}{d t}=0$ at $t=0$.
5. Answer ANY TWO of the following.
(a) Solve $\left(2 x^{2} y^{2}+y\right) d x+\left(3 x-x^{3} y\right) d y=0$ using integrating factor.
(b) Find the general solution of $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin (2 x)$.
(c) By making the substitution $z=\frac{y}{x^{n}}$ or $y=z x^{n}$ and choosing a convenient value of n,show that the following differential equation can be transformed into equation with separable variable,and hence solve it $\frac{d y}{d x}=\frac{y-x y^{2}}{x+x^{2} y}$.

